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Multivariate Spline Functions. I.
Construction, Properties and Computation

D. W. ARTHUR

Applied Mathematics, University of Edinburgh, Edinburgh, Scotland

Communicated by C. W. Clenshaw

A construction is given which allows the Hilbert space treatment of spline
functions to be applied to the case of more than one variable, when the basic
operator is a linear partial differential one. The particular case of the tensor
product polynomial spline in two variables is then studied using a reproducing
kernel, and its main properties, including the minimization ones, are deduced.
A stable computational method is then given for this spline function, with certain
point evaluation functionals. Finally, extensions are discussed, for more general
linear functionals, for more general differential operators, and for more than two
variables.

1. INTRODUCTION

The theory of spline functions in one variable is a well-understood one.
There are difficulties in extending the results to more variables, not the least
of which is the question; What is the "natural" extension? The major mathe­
matical difficulty is that the operators involved, being partial differential
operators, do not have a finite dimensional null-space. This prohibits
application of the general theory of Atteia [3], and Anselone and Laurent [1]
to define and determine the properties of multivariate spline functions.

In Section 2 we remove this obstacle by attaching further operators to the
operator, by a construction similar to that used by Atteia [4] in a different
context. This enables the general theory mentioned above to be invoked
to define multivariate splines.

The most fruitful results are obtainable for "tensor product" splines,
defined in n-dimensional rectangles. We shall restrict ourselves to this case
from Section 3 onwards; and also, for simplicity, we shall deal only with the
two-variable polynomial case. Extensions to more variables and to splines
defined by other operators will be discussed in Section 7.

The main tool used in proving the properties of these splines is a repro­
ducing kernel, which we prove the existence of, and indeed construct, in
Section 3. Our spline functions are then constructed in Section 4, and their
principal properties shown in Section 5.
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A computational method for these spline functions is given in Section 6.
It is based on the one-variable method of Greville [6, 7].

Notation. We shall, throughout this paper, use the notation, for partial
derivatives;

. 8i+J
f/(x, y) - 8xi 8yd(x, y).

2. DEFINITION OF MULTIVARIATE SPLINE FUNCTIONS

(1

Let L be a linear partial differential operator in m variables Xl , •.. , X", ;

of order (Xi in Xi; defined in a closed region r. Let M i , i = 1,... , fL be linear
differential operators of order at most (X; in Xj ; defined on a subset Ti of
of dimension less than m.

Let H be the Hilbert Space containing functions f, defined in r, which are
continuously differentiable (Xi - 1 times in Xi for all i, have their derivative
of order (Xi - 1 in Xi for all i absolutely continuous, and that of order (Xi

in Xi for all i in ~(r), the usual Lebesgue space. Let the scalar product be

(2.1)

where g = (Zl , ... , z",) EO r.
We assume that {Mi } is minimal; and, if N is the set off EO H such that

Lf= 0,

MJ=O, i = 1,... , p"

(2.2)

that N has finite dimension q. Note that this latter assumption will mean that
the M i must contain operators whose domains are of every dimension less
than m (dimension 0, viz. evaluation at a point, is not necessary, but is not
prohibited).

Suppose a set, A, of n continuous linear functionals, Ai, i = 1,..., n are
defined on H, with representers k i EO H. Assume that they are linearly inde­
pendent and span a subspace K C H.
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Assume

(i)

(ii)
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n ;? q,

K.l n N = {O}.

(2.3)

(2.4)

These assumptions allow us to define a unique spline function.
Define

where, if r i has dimension 0, we interpret it as ~.

If

(2.5)

and

then define

Z2 = (g, gl ,... , g,,),

jE~(r),

gE~(T),

Pi> 0. (2.6)

This form is a scalar product for Z, making it a Hilbert Space.
Define a map T from H into Z by

Tj = (Lf, M1f, ... , MJ) E Z for alljE H. (2.7)

Then T is linear and continuous from H onto U = TH and has null-space N.
Define r = (rl , r2 ,... , rn) E En, and

U(r) = {IE H; (ki ,J)H = ri, i = 1,... , n}. (2.8)

Then, following Atteia [3] and Anselone and Laurent [1], we define an
interpolating spline junction, s(x1 ,... , x m ) for r w.r.t. L and the M i , as any
element of U(r) such that

II Ts liz = mm II Tjllz .
!EU(r)

(2.9)

The theory of the two papers quoted can now be invoked, not only to
prove existence and uniqueness of s, but also its main properties and a
method of construction.

In what follows, however, we shall examine a particular type of spline
function, the polynomial spline function in two variables, defined in a
rectangle in P. This spline has important applications, and our method of
approach and construction will yield more practical results than that referred
to above, although we shall use the definition embodied in (2.9).
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3. A REPRODUCING KERNEL FOR POLYNOMIAL SPLINE FUNCTIONS

Let us fix our attention on the case

399

an I
M n+i = ayn '

X=Xi

i = 1,... , n,

i = 1,... , m,
(3.2)

(3.4)

where {Xi}~~1 and {y;};~1 are distinct points in [a, b] and [c, d], respectively.
We choose as scalar product for H the form (similar to (2.1)),

U; g) = f f f(Xi , y;) g(Xi , y;) + I r fl'(x, y;) gom(x, y;) dx
i=1 ;~1 i~1 a

(3.3)

+ f ffnO(xi,y)gnO(Xi,y)dy+ r ffnm(x,y)gnm(x,y)dydx.
i=l cae

The null-space we are concerned with is now

N = kEH:f(X, y) = ~Ol~: f3i;xiyi, f3ij constant!,

which is of finite dimension mn.
OUf construction requires a reproducing kernel. The idea of using such a

kernel in spline function theory originates with de Boor and Lynch [5]. If H
is a Hilbert space of functions, then K is a reproducing kernel if K(', y) E H
for all fixed y, and

f = (K(x, '),j(x»), for allfE H. (3.5)

K then has the property that if Ais a linear functional on H, then Ais bounded
if and only if rf; E H, where

rf; = AK(·,y).

rf; is then the representer of A.
Following de Boor and Lynch, define

(3.6)

m

c;(x) = IT
J=1
f#i

n

dly) = IT
i=1
i#i

x - Xj

Xi - X;

y - Yi
y; - Yi

i = 1,... , m,

j = 1,... , n,

(3.7)

(3.8)
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where
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(x - S)::~-l m (Xi - Sy~-l

g(X, s) = (m _ I)! - i~l (m _ I)! Ci(X), (3.9)

(y _ t)~-l n (Yj _ t)~-1

hey, t) = (n _ I)! - ~1 (n _ I)! d;(y), (3.10)

Also, define

if z ~ 0,
if z < O.

(3.11)

m m

+ I I (Xi - Xj)~m-lciCx)c;(s)
i~l j~l

- f {(X - Xi)~m-lciCs) + (Xi - s)~m-lciCx)}], (3.12)
i=l

with a similar expression for K2(y, t), and

K(x, s; y, t) = K1(x, s) K2(y, t).

We now have

(3.13)

THEOREM 3.1. H, with scalar product (3.3), is a Hilbert space, with
reproducing kernel K given by (3.13).

Proof This is proved in a similar way to the result in de Boor and Lynch.
It is first shown (details omitted) that the Lagrangian formula

f(x, y) = f f ciCx)d;(y)f(Xi' yj) + f Ci(X) rhey, t)fnO(Xi' t) dt
i~l j~l i~l c

+ f d;(y) rg(x, s)fom(s, yj) ds
j~l a

+rrg(x, s) hey, t)fnm(s, t) dt ds,
a c

(3.14)

holds true in H. This formula allows us to show that H is a Hilbert space with
scalar product (3.3).



MULTIVARIATE SPLINE FUNCTIONS. I

It is then shown that K has properties:

K(-, s; ., t) E H,

f = (K(x, .; Y, '),f(x, y)),

i.e., it is a reproducing kernel for H.

COROLLARY 3.2. The linear functional A, where

401

(3.

(3.16)

gE [a, b], 7) E [c, d], (3.17)
is bounded.

Proof It is easily seen that

1> = K(', g; ',7)) E H,

which proves i\ is bounded, with representer 1>.

4. CONSTRUCTION OF POLYNOMIAL SPLINES

We choose the linear functionals in Section 2 to be those defining point
evaluation at (Xi' Yj) for i = 1,... , k and j = 1,... , I, where all the Xi lie in
[a, b] and all the Yj in [c, d]. We assume that the Xi and Yj used already in
(3.2) coincide with the corresponding ones in {Xi}:=l and {Yj}~=l . We thereby
assume that k ~ m and I ~ n, which implies that the number of linear
functionals, kl, is greater than or equal to the dimension of N, mn, as required
in (2.4).

Let
kij(x, y) = K(x, Xi ; Y, Yj), i = 1,... , k, j = 1,... , t, (4.1)

and define the subspace, S, of H to be that spanned by the functions
{kij}~~l.i=l . S has dimension kl, and so we can fix functions in S by imposing
the interpolation conditions

i = 1,... , k, j = 1,... , I. (4.2)

Let Ps be the orthogonal projection of H onto S, i.e., Psf is the best
approximation to f by an element in S with respect to the norm in H.

THEOREM 4.1. Psfis the spline function defined in Section 2.

Proof,
(Ps!' h) = (Ps!' Psh) = (!, Psh),

IIfl12 = Ilf - Psfl1 2 + II Psf112
,

for all!, h E H

for allfEH.

(4.3)

(4.4)
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Define
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Wf = {h: hE H, Aijh = Aijf, i = 1,..., k;j = 1, ...,1}. (4.5)

Substitute h = k ij in (4.3) to.give

for allfE H, (4.6)

and so Psf is the unique element in S interpolating to f with respect to
{Aij}~:.L~1 . Thus,

and so

II Psfll ~ II h II
with equality if and only if h = Psf

This shows that Psf minimizes

for all hE Wf ,

for all h E Wf ,

(4.7)

(4.8)

i.e.,

f r (hom(x, Yj))2 dx + f r (hnO(Xi' y))2 dy +rr (hnm(x, y))2 dy dx,
j=1 a i=l cae

(4.9)

f r(Mjh)2 dx + f r(Mi+nh)2 dy +rr(Lh)2 dy dx, (4.10)
j=1 a i=l cae

subject to constraints (4.2), where Aijh = rij = Aijf, i = 1,... , k; j = 1,..., 1.
This is precisely how the spline function was defined in Section 2 (we have
chosen Pi = 1 for all i).

COROLLARY 4.2. S is the set ofall such spline functions.

5. PROPERTIES OF POLYNOMIAL SPLINES

Consider k ij , one of the basis for S. (4.1) a,nd (3.13) tell us that

kiiCx, y) = KI(x, Xi) K2(y, yj), (5.1)

and hence we can readily deduce properties of k ij , and hence of all members
of S, from the properties of KI(x, Xi)' This latter function, in fact, has the
form of a one-variable spline function. In particular, KI is a polynomial of
degree at most 2m - 1 in each interval [xv, XV+l], p = 1,... , k - 1, it has
continuous derivatives up to and including order 2m - 2, and is a polynomial
of degree at most m - 1 in [a, Xl] and [xk , b].

These properties tell us that our two":variable spline sex, y) has the form
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of a double polynomial

2m-12n-l
I I YJij xiyJ,
i~O j~O

403

(5.2)

in each rectangle [Xi' Xi+l] X [Yi' Yi+1], i = 1,... , k - 1, j = 1, ... , I - 1. It
has continuous derivatives up to and including that of order 2m - 2 in x
and 2n - 2 in y. For x ¢ [Xl' Xk], the form is L:~l L::~l YJiiXiyi, and for
Y ¢ [Yl , Yd, it is L~:~1 L:::: YJijXiyi. These latter conditions are equivalent to

an+is
--=0
ayn+i '

for X < Xl or X> XI<, Y E [c, d],

i = 0, 1,... , m - 1,

for Y<Yl or Y>Yl, xE[a,bl,

j = 0, 1,... , n - 1.

(5.3a)

(5.3b)

Further analysis of this case will be found in Section 6, when computation
is considered.

There are two minimization properties of these spline functions which we
prove using the methods of de Boor and Lynch [5].

THEOREM 5.1. For given f E H, of all S E S, the interpolating function in
the sense of(4.2), s, has the property that

f r(fom(x, Yi) - som(x, Yi))2 dx + f: r (fnO(Xi , y)
i~l a i=1 c

- SnO(Xi' y))2 dy +rrUnm(x, y) - Snm(x, y)2 dy dx
a c

with equality if and only if

s = s -+- ./., '1-"

m-l n-1
where if;(x, y) = I I YJiixiyi, for some 'l')ij.

i~O i=O
(5.5)
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Proof This result follows since s = Psf is the best approximation to f
with respect to the norm

m n n b

II h li2 = L L (h(xi' Yi))2 + L J (hom(x, Yi))2 dx
~1~1 ~1 a

+ f r(hnO(xi' y))2 dy +rr(hnm(x, y))2 dy dx. (5.6)
i=l cae

The second result is a generalization of Schoenberg's Theorem (Schoenberg
[9]). Suppose ,\ is a linear functional belonging to

g(m.n) = 1,\: V = ~~1 ~~1 f f f/(x, y)d fLij(X, y),

fLij of bounded variation!. (5.7)

Following Sard [8], we approximate ,\ by A* where

k l k l

A*f = L L Yijf(Xi' Yi) = L L YiiAiij, (5.8)
i=1 i=1 i=1 j=1

the Yii being constants, and the Aij bounded linear functionals, as in (4.2).
The Yij are chosen as follows.

First, ,\* is enforced to be exact for fEN, i.e., for functions of the form
'L,~~1 'L,::o1 YJiiXiyi, YJij constant. Now apply R = ,\ - ,\* to (3.14):

where

Rf= f r Vi(t)fnO(Xi' t)dt+ if U;{s)fom(S,Yi)ds
i=1 c i~l a

+ rr W(s, t)fnm(s, t) dt ds,
a c

(5.9)

U;{s) = R(""Y)[d;{y) g(x, s)] = R("',Y) [d,{y) (~m_~)~~1], (5.10)

( t)n-l
Viet) = R(X,y)[ci(X) hey, t)] = R("',Y) [c;(x) ~n--=- I)! ], (5.11)

W(s, t) = R("',Y)[g(x, s) hey, t)]

= R("',Y) [(x - sr~,-I(y - t)~-I] _ f (Yi - t)~-1 U{s)
(m - I)! (n - 1)! H (n - I)! '
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We can now estimate (5.9) by
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[

m Jd n b b d " 1/2

II Rfl! ~ L: (V;(t))2 dt + I J (Uj (S»)2 ds + f f (W(s, t))2 dt ds I
i=l C j=1 a (t ..J C J

(5.

splitting the contributions offand the Yij . The remaining degrees of freedom
in the Yij are now removed by minimizing

f r(Vit))2 dt + f r(U;(S))2 ds + rbr(W(s, t))2 dt ds. (5.
i=l G j=l a oJ a c

Such approximations are exceedingly difficult to construct, in all but the
simplest cases. The task, however, may be by-passed by our generalization
of Schoenberg's Theorem.

THEOREM 5.2. A* satisfies

A*f = A(Psf). (5.1 5)

Proof Firstly, we construct another approximation to '\, of the same
form as A*.

Ie I

Xi = I I gij Ai;!
i~l ;~1

Let h be the representer of Ain H, and 1i that of X. k ij , the representers of
Ai; , span S. Let

then

II R II = sup I Rfl.
IIfll<l

Choose gij , and hence fix X, to minimize II .R II. But

Ie I

II R II = II h - I I gijkij
i~l j~l

(5.

8)

so Ti = Psh, and Xsatisfies property (5.15).
We finish the proof by showing ,\* = X. Note that X, from (5.15), is

exact for fE S, and, a fortiori, for fE N. But X also minimizes II R II over
,\' = L~~l L~=l f3ijAij , and hence is identical to A*.
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6. COMPUTATION OF POLYNOMIAL SPLINES

We now consider the computation of the polynomial spline function of
degree (2m - 1, 2n - 1) (i.e., 2m - 1 in x and 2n - 1 in Y), with inter­
polation conditions

i = 1,..., k, j = 1,... , l. (6.1)

Define {Xl'"'' Xk} and {Yl ,..., YI} to be knot generating sets, assuming

a ~ Xl < X2 < < Xk ~ b,

c ~ Y1 < Y2 < < YI ~ d.
(6.2)

We use (m, n) to represent the degree of a polynomial or spline function
if it is of degree m in X and n in y.

It can be shown easily that s takes the form

k I k

sex, y) = L L <Xij(x - Xi)~m-\y - Yi)~n-l + L pb)(x - Xi)~m-l
i~l i~l i~l

I

+ L qix)(y - Yi)~n-l + P(X, Y),
i~l

(6.3)

where P is a polynomial of degree (m - 1, n - 1), Pi and qi are polynomials
of degree n - 1 and m - 1, respectively, and the <Xij are constants. We also
have conditions

k

L <Xijx/ = 0,
i~l

I

L <XijY/ = 0,
i~l

k

L x/pb) 0,
i~l

I

L y/qix) - 0,
i~l

r = 0, 1, ... , m - 1, j = 1,... , I,

s = 0, 1,... , n - 1, i = 1,... , k,

r = 0, 1,... , m - 1,

s = 0, 1,... , n - 1,

(6.4a)

(6.4b)

(6.4c)

(6.4d)

This approach to the problem of computation is ruled out in the one­
variable case due to the ill-conditioning of the equations. The situation
here is even worse, since (6.1) and (6.4) provide kl + kn + 1m + 2mn
equations for the kl + kn + 1m + mn unknowns in (6.3). (Observe, for
example, that both (6.4a) and (6.4b) imply 2::=1 2:~=1 <Xij = 0.)
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Greville ([6] and, in more detail, [7]) gives a more stable construction for
the one-variable spline. We adapt it, in what follows, to the two-variable case.

Using the notation
(6.5)

for the divided difference off of order m for the points listed, we define the
"B-splines" :

where

N (m)() N(m)(. )
v X == x, XV,"" X v+m ,

N (n)() N(n)(. )r Y = Y, Yr ,... , Yr+n ,

v = 1, ... , k - m,

T = 1, ...,1- n,
(6.6)

N(m)(x; s) = (x - s)~m-\

N(n)(y; t) = (y _ t):n-l.
(6.7)

We have seen in Section 5 that our spline function sex, y) may be written
in the form

kl

sex, y) = L 'iUi(X) v;(y),
i~l

(6.8)

where 'i are constant, and Ui(X) and v;(y) are spline functions with knots
given by the knot generating sets, and of degrees 2m - 1 and 2n - 1,
respectively. Greville proves that

k-m

u;(x) = L givN~m)(x) + Piex),
v=l

(6.9)
l-n

vb) = L YJirN~n)ey) + Q;(y),
r=l

where giv and YJir are constants, and Pi and Qi are polynomials of degree
m - 1 and n - 1, respectively.

If we substitute (6.9) into (6.8), we can write the result in the form

where

k 1

sex, y) = L L fJijMi(x) Nly),
i=l j~l

(6.

M;(x) = N;m)(x) ,
xr ,

i = 1,... , k - m,
r = i - (k - m + 1), i = k - m + 1,... , k,e6.11)

and

NiCy) = ~n)(y), j = 1,...,1- n,
s = j - (l - n + 1), j = 1 - n + 1,... , I,

(6.12)
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and the (3iJ are constants. This form for sex, y) now has kl unknowns,
determined from the kl conditions (6.1). These unknowns are calculated by
obtaining various divided differences of s in both variables, both from (6.1)
and (6.10), and equating the results.

We define the following matrices

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

where lies) = Si-\

B {{3 1.k-m l-n
• ~vJ u=l. v-I'

P: {Mi(Xl ,•.. , X")}~:~~':l ,

Q: {N;(Yl ,... , Yv)}~-;:'~:~~l ,

N {N( )}l-n.l-n
: J Yv , Yv+l ,... , Yv+n J~l,v=l'

T · { (x . Y )}k-m.l-n
. S ",... , X,,+m , Yv , .. " v+n ,,~l.v~l,

B . {(3 }k-m.ny . i.i+(l-n) i~l.J=l ,

B . {(3 }m.l-n'" . i+(k-m),; i~l,§=l ,

It is straightforward to construct T, T", , T y , and F",y directly and to equate
the results with the formulae obtained from (6.10) to find,

B = M-lTN-\ (6.27a)

B", = (D",T)-l[T",N-l - PTB], (6.27b)

By = [M-lTy - BQ](Dy)-\ (6.27c)

B",y = (D",T)-l[T",y - PTBQ - D",TB",Q - PTByDy](Dy)-l. (6.27d)

The four parts of (6.27) give the values of all the (3iJ, and hence determine
sex, y).
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D x and D y are readily inverted as they are triangular matrices. M-l is
easily found (using, say, Cholesky's Method) since M is symmetric, (2m ­
banded, and positive or negative definite according as ( -l)m is +1 or -1,
respectively. N-l is found similarly.

sex, y) can be readily evaluated from (6.10) since Mlx) and Nj(y) are easily
computed.

In the one-variable case, coincidence of p knots may be interpreted as
interpolation to the first p - 1 derivatives, with a drop in continuity across
the knot, of order p - 1. The situation in the multivariate case is similar,
and coincidence in the knot generating sets can be handled by our algorithm,
provided the necessary derivatives are supplied, and the usual interpretation
is placed on the resultant divided differences, viz. they become derivatives.

7. EXTENSIONS

We have used a Ji containing only point evaluation functionals of a certain
form. This restriction may be lifted, although the reproducing kernel analysis
of Sections 3, 4 and 5 depends on Ji containing mn functionals which may be
split in the form

II·· = 1i.(X) ply)u r¥~ '), i = 1,... , m, '_1
] ~ .1, ... , n.

Provided this condition is satisfied, Ji may also contain any functionals in
.!e(m,n) as long as the resultant set satisfies linear independence, and the
conditions (2.3) and (2.4). Indeed in Part Two of this paper [2], we require
to add linear functionals to Ji which alter it from the form used above.

The algorithm of Section 6, however, is not adaptable to general linear
functionals, and Ji must be of a form containing kl functionals, each splittable
as in (7.1), and involving derivative evaluation of all derivatives up to a
certain order. Should A not be of this strict form, s can be constructed
numerically using Section 4, although that method tends to be an
ill-conditioned one.

OUf analysis can be adapted to cover more general linear operators.
Suppose L is a differential operator in m variables X(l\ X(2), ..• , x{mJ, and

L = L 1L 2 , ... , L m ,

where L i operates on XU) only, and is of order CXi, i = 1, ... , m.
Impose interpolation conditions

f( (1) (2) (m»)
XS1 , XS 2 , ... , XSm = rSl S2'''Sm '

where f3i = 1,... , Ti , Ti ~ CXi , i = 1,..., m.

(7

(7.3)
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Now choose

D. W. ARTHUR

m

M;p) = IT L k I",(i)~",(i), i = 1,... , m, p = 1,... , (Xi,
k~l p

k#

i,j = 1,... , m, i;;::j
(7.4)

p = 1,... , (Xi, q = 1,... , (Xj,

M(131"· .. l3k-l.l3k+! •.•• ,fJm) - L'1 . (-
1.2"...k-l.k+l.....m - k "'(')="'13;)

k = 1,... , m, fJi = 1,... , (Xi, (i = 1,... , m, i =1= k)

and minimize

(7.5)

(7.6)

subject to the constraints (7.3).
The result is a spline function in m variables, which is a piecewise function,

each piece being of the form

0:1 am

" ••• " 71 u<I) '" u(m)'--' L.t -,fh,···,l3m 81 8m '
131~1 I3m=l

where u~:) is one of the basis elements of the null-space of L k • Explicit
construction of the spline function is possible using a reproducing kernel,
which turns out to be the product of m one-variable reproducing kernels.

We can also adapt the construction of Section 6 to the case of m variables,
for m > 2, but the algorithm is no longer expressible in neat matrix form.

8. CONCLUSION

The properties shown in Section 5 make spline functions valuable for
practical use in interpolation, numerical differentiation and quadrature. In
Part Two of this paper, we consider the computation of "best" error bounds
for application of the two-variable splines to these problems.
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